The Other Kind of Bypass Capacitor
There’s a type of bypass capacitor I’d like to talk about today.
It’s not the usual power supply bypass capacitor, aka decoupling capacitor, which is used to provide local charge storage to an integrated circuit, so that the high-frequency supply currents to the IC can bypass (hence the name) all the series resistance and inductance from the power supply. This reduces the noise on a DC voltage supply. I’ve...
New Comments System (please help me test it)
I thought it would take me a day or two to implement, it took almost two weeks...
But here it is, the new comments systems for blogs, heavily inspired by the forum system I developed earlier this year.
Which means that:
- You can easily add images, either by drag and drop or through the 'Insert Image' button
- You can add MathML, TeX and ASCIImath equations and they will be rendered with Mathjax
- You can add code snippets and they will be highlighted with highlights.js
- You can edit...
Use DPLL to Lock Digital Oscillator to 1PPS Signal
IntroductionThere are occasions where it is desirable to lock a digital oscillator to an external time reference such as the 1PPS (One Pulse Per Second) signal output from a GPS receiver. One approach would be to synchronize a fixed frequency oscillator on the leading edge of the 1PPS signal. In many cases, this will result in adequate performance. However, in situations where simple synchronization does not provide adequate performance, digital phase-lock techniques can be applied to a...
Digital PLL's -- Part 2
In Part 1, we found the time response of a 2nd order PLL with a proportional + integral (lead-lag) loop filter. Now let’s look at this PLL in the Z-domain [1, 2]. We will find that the response is characterized by a loop natural frequency ωn and damping coefficient ζ.
Having a Z-domain model of the DPLL will allow us to do three things:
Compute the values of loop filter proportional gain KL and integrator gain KI that give the desired loop natural...Digital PLL's -- Part 1
1. IntroductionFigure 1.1 is a block diagram of a digital PLL (DPLL). The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal. The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance. The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.
One application of the DPLL is to recover the timing in a digital...
Stability or insanity
I've just spent over two weeks getting ready to do my next video. It was a combination of one of those vast underestimations one occasionally makes, combined with falling into a bit of an obsession.
I am, at this point, not only wondering if it was worth it, but questioning my sanity in carrying on even when the going went beyond tough to just plain crazy.
At any rate, a good video needs a visual aid, and I decided that my video needed to demonstrate stability with a pendulum....
PID Without a PhD
I both consult and teach in the area of digital control. Through both of these efforts, I have found that while there certainly are control problems that require all the expertise I can bring to bear, there are a great number of control problems that can be solved with the most basic knowledge of simple controllers, without resort to any formal control theory at all.
This article will tell you how to implement a simple controller in software and how to tune it without getting into heavy...
3 Good News
Good News #1Last week, I announced a new and ambitious reward program that will be funded by the new Vendors Directory.
This week, I am happy to announce that we have our firsts two sponsors! Quantum Leaps & Abelon Systems have agreed to pay the sponsorship fee to be listed in the new Vendors Directory. Because of their support, there is now some money in the reward pool ($1,000) and enough to pay for the firsts 500 'beers' awarded. Please...
The New Forum is LIVE!
After months of hard word, I am very excited to introduce to you the new forum interface.
Here are the key features:
1- Easily add images to a post by drag & dropping the images in the editor
2- Easily attach files to a post by drag & dropping the files in the editor
3- Add latex equations to a post and they will be rendered with Mathjax (tutorial)
4- Add a code snippet and surround the code with
Ancient History
The other day I was downloading an IDE for a new (to me) OS. When I went to compile some sample code, it failed. I went onto a forum, where I was told "if you read the release notes you'd know that the peripheral libraries are in a legacy download". Well damn! Looking back at my previous versions I realized I must have done that and forgotten about it. Everything changes, and keeping up with it takes time and effort.
When I first started with microprocessors we...
Oscilloscope Dreams
My coworkers and I recently needed a new oscilloscope. I thought I would share some of the features I look for when purchasing one.
When I was in college in the early 1990's, our oscilloscopes looked like this:
Now the cathode ray tubes have almost all been replaced by digital storage scopes with color LCD screens, and they look like these:
Oscilloscopes are basically just fancy expensive boxes for graphing voltage vs. time. They span a wide range of features and prices:...
Linear Feedback Shift Registers for the Uninitiated, Part II: libgf2 and Primitive Polynomials
Last time, we looked at the basics of LFSRs and finite fields formed by the quotient ring \( GF(2)[x]/p(x) \).
LFSRs can be described by a list of binary coefficients, sometimes referred as the polynomial, since they correspond directly to the characteristic polynomial of the quotient ring.
Today we’re going to look at how to perform certain practical calculations in these finite fields. I maintain a Python library on bitbucket called...
Byte and Switch (Part 2)
In part 1 we talked about the use of a MOSFET for a power switch. Here's a different circuit that also uses a MOSFET, this time as a switch for signals:
We have a thermistor Rth that is located somewhere in an assembly, that connects to a circuit board. This acts as a variable resistor that changes with temperature. If we use it in a voltage divider, the midpoint of the voltage divider has a voltage that depends on temperature. Resistors R3 and R4 form our reference resistance; when...
What is Electronics
IntroductionOne answer to the question posed by the title might be: "The understanding that allows a designer to interconnect electrical components to perform electrical tasks." These tasks can involve measurement, amplification, moving and storing digital data, dissipating energy, operating motors, etc. Circuit theory uses the sinusoidal relations between components, voltages, current and time to describe how a circuit functions. The parameters we can measure directly are...
Somewhat Off Topic: Deciphering Transistor Terminology
I recently learned something mildly interesting about transistors, so I thought I'd share my new knowledge with you folks. Figure 1 shows a p-n-p transistor comprising a small block of n-type semiconductor sandwiched between two blocks of p-type semiconductor.
The terminology of "emitter" and "collector" seems appropriate, but did you ever wonder why the semiconductor block in the center is called the "base"? The word base seems inappropriate because the definition of the word base is:...
Voltage - A Close Look
My first boss liked to pose the following problem when interviewing a new engineer. “Imagine two boxes on a table one with a battery the other with a light. Assume there is no detectable voltage drop in the connecting leads and the leads cannot be broken. How would you determine which box has the light? Drilling a hole is not allowed.”
The answer is simple. You need a voltmeter to tell the electric field direction and a small compass to tell the magnetic field...
How precise is my measurement?
Some might argue that measurement is a blend of skepticism and faith. While time constraints might make you lean toward faith, some healthy engineering skepticism should bring you back to statistics. This article reviews some practical statistics that can help you satisfy one common question posed by skeptical engineers: “How precise is my measurement?” As we’ll see, by understanding how to answer it, you gain a degree of control over your measurement time.
An accurate, precise...Real-time clocks: Does anybody really know what time it is?
We recently started writing software to make use of a real-time clock IC, and found to our chagrin that the chip was missing a rather useful function, namely elapsed time in seconds since the standard epoch (January 1, 1970, midnight UTC).Let me back up a second.A real-time clock/calendar (RTC) is a micropower chip that has an oscillator on it that keeps counting time, independent of main system power. Usually this is done with a lithium battery that can power the RTC for years, so that even...
Oscilloscope review: Hameg HMO2024
Last year I wrote about some of the key characteristics of oscilloscopes that are important to me for working with embedded microcontrollers. In that blog entry I rated the Agilent MSOX3024A 4-channel 16-digital-input oscilloscope highly.
Since then I have moved to a different career, and I am again on the lookout for an oscilloscope. I still consider the Agilent MSOX3024A the best choice for a...
Launch of EmbeddedRelated.tv
With the upcoming Embedded Word just around the corner, I am very excited to launch the EmbeddedRelated.tv platform.
This is where you will find the schedule for all the live broadcasts that I will be doing from Embedded World next week. Please note that the schedule will be evolving constantly, even during the show, so I suggest your refresh the page often. For instance, I am still unsure if I will be able to do the 'opening of the doors' broadcast as...
Complexity in Consumer Electronics Considered Harmful
I recently returned from a visit to my grandmother, who lives in an assisted living community, and got to observe both her and my frustration first-hand with a new TV. This was a Vizio flatscreen TV that was fairly easy to set up, and the picture quality was good. But here's what the remote control looks like:
You will note:
- the small lettering (the number buttons are just under 1/4 inch in diameter)
- a typeface chosen for marketing purposes (matching Vizio's "futuristic" corporate...
Two jobs
For those of you following closely embeddedrelated and the other related sites, you might have noticed that I have been less active for the last couple of months, and I will use this blog post to explain why. The main reason is that I got myself involved into a project that ended up using a better part of my cpu than I originally thought it would.
edit - video of the event:
I currently have two jobs: one as an electrical/dsp engineer recycled as a web publisher and the other...
Optimizing Optoisolators, and Other Stories of Making Do With Less
It’s been a few months since I’ve rolled up my sleeves here and dug into some good old circuit design issues. I started out with circuit design articles, and I’ve missed it.
Today’s topic will be showing you some tricks for how to get more performance out of an optoisolator. These devices — and I’m tempted to be lazy and call them “optos”, but that sounds more like a cereal with Greek yogurt-covered raisins — are essentially just an LED...
Sensors Expo - Trip Report & My Best Video Yet!
This was my first time at Sensors Expo and my second time in Silicon Valley and I must say I had a great time.
Before I share with you what I find to be, by far, my best 'highlights' video yet for a conference/trade show, let me try to entertain you with a few anecdotes from this trip. If you are not interested by my stories or maybe don't have the extra minutes needed to read them, please feel free to skip to the end of this blog post to watch the...
Linear Feedback Shift Registers for the Uninitiated, Part II: libgf2 and Primitive Polynomials
Last time, we looked at the basics of LFSRs and finite fields formed by the quotient ring \( GF(2)[x]/p(x) \).
LFSRs can be described by a list of binary coefficients, sometimes referred as the polynomial, since they correspond directly to the characteristic polynomial of the quotient ring.
Today we’re going to look at how to perform certain practical calculations in these finite fields. I maintain a Python library on bitbucket called...
March is Oscilloscope Month — and at Tim Scale!
I got my oscilloscope today.
Maybe that was a bit of an understatement; I'll have to resort to gratuitous typography:
I GOT MY OSCILLOSCOPE TODAY!!!!Those of you who are reading this blog may remember I made a post about two years ago about searching for the right oscilloscope for me. Since then, I changed jobs and have been getting situated in the world of applications engineering, working on motor control projects. I've been gradually working to fill in gaps in the infrastructure...
New Comments System (please help me test it)
I thought it would take me a day or two to implement, it took almost two weeks...
But here it is, the new comments systems for blogs, heavily inspired by the forum system I developed earlier this year.
Which means that:
- You can easily add images, either by drag and drop or through the 'Insert Image' button
- You can add MathML, TeX and ASCIImath equations and they will be rendered with Mathjax
- You can add code snippets and they will be highlighted with highlights.js
- You can edit...
The DSP Online Conference - Right Around the Corner!
It is Sunday night as I write this blog post with a few days to go before the virtual doors of the very first DSP Online Conference open..
It all started with a post in the DSPRelated forum about three months ago. We had just had a blast running the 2020 Embedded Online Conference and we thought it could be fun to organize a smaller event dedicated to the DSP community. So my goal with the post in the forum was to see if...
Voltage Drops Are Falling on My Head: Operating Points, Linearization, Temperature Coefficients, and Thermal Runaway
Today’s topic was originally going to be called “Small Changes Caused by Various Things”, because I couldn’t think of a better title. Then I changed the title. This one’s not much better, though. Sorry.
What I had in mind was the Shockley diode equation and some other vaguely related subjects.
My Teachers Lied to MeMy introductory circuits class in college included a section about diodes and transistors.
The ideal diode equation is...
Finally got a drone!
As a reader of my blog, you already know that I have been making videos lately and thoroughly enjoying the process. When I was in Germany early this summer (and went 280 km/h in a porsche!) to produce SEGGER's 25th anniversary video, the company bought a drone so we could get an aerial shot of the party (at about the 1:35 mark in this video). Since then, I have been obsessing on buying a drone for myself and finally made the move a few weeks ago - I acquired a used DJI...