## Complexity in Consumer Electronics Considered Harmful

I recently returned from a visit to my grandmother, who lives in an assisted living community, and got to observe both her and my frustration first-hand with a new TV. This was a Vizio flatscreen TV that was fairly easy to set up, and the picture quality was good. But here's what the remote control looks like:

You will note:

- the small lettering (the number buttons are just under 1/4 inch in diameter)
- a typeface chosen for marketing purposes (matching Vizio's "futuristic" corporate...

## Which MOSFET topology?

A recent electronics.StackExchange question brings up a good topic for discussion. Let's say you have a power supply and a 2-wire load you want to be able to switch on and off from the power supply using a MOSFET. How do you choose which circuit topology to choose? You basically have four options, shown below:

From left to right, these are:

High-side switch, N-channel MOSFET High-side switch, P-channel MOSFET Low-side switch, N-channel...## Thermistor signal conditioning: Dos and Don'ts, Tips and Tricks

In an earlier blog entry, I mentioned this circuit for thermistor signal conditioning:

It is worth a little more explanation on thermistor signal conditioning; it's something that's often done poorly, whereas it's among the easiest applications for signal conditioning.

The basic premise here is that there are two resistors in a voltage divider: Rth is the thermistor, and Rref is a reference resistor. Here Rref is either R3 alone, or R3 || R4, depending on the gain...

## Real-time clocks: Does anybody really know what time it is?

We recently started writing software to make use of a real-time clock IC, and found to our chagrin that the chip was missing a rather useful function, namely elapsed time in seconds since the standard epoch (January 1, 1970, midnight UTC).Let me back up a second.A real-time clock/calendar (RTC) is a micropower chip that has an oscillator on it that keeps counting time, independent of main system power. Usually this is done with a lithium battery that can power the RTC for years, so that even...

## Byte and Switch (Part 2)

In part 1 we talked about the use of a MOSFET for a power switch. Here's a different circuit that also uses a MOSFET, this time as a switch for signals:

We have a thermistor Rth that is located somewhere in an assembly, that connects to a circuit board. This acts as a variable resistor that changes with temperature. If we use it in a voltage divider, the midpoint of the voltage divider has a voltage that depends on temperature. Resistors R3 and R4 form our reference resistance; when...

## Byte and Switch (Part 1)

Imagine for a minute you have an electromagnet, and a microcontroller, and you want to use the microcontroller to turn the electromagnet on and off. Sounds pretty typical, right?We ask this question on our interviews of entry-level electrical engineers: what do you put between the microcontroller and the electromagnet?We used to think this kind of question was too easy, but there are a surprising number of subtleties here (and maybe a surprising number of job candidates that were missing...

## Stairway to Thévenin

This article was inspired by a recent post on reddit asking for help on Thévenin and Norton equivalent circuits.

(With apologies to Mr. Thévenin, the rest of the e's that follow will remain unaccented.)

I still remember my introductory circuits class on the subject, roughly as follows:

(NOTE: Do not get scared of what you see in the rest of this section. We're going to point out the traditional approach for teaching linear equivalent circuits first. If you have...

## Isolated Sigma-Delta Modulators, Rah Rah Rah!

I recently faced a little "asterisk" problem, which looks like it can be solved with some interesting ICs.

I needed to plan out some test instrumentation to capture voltage and current information over a short period of time. Nothing too fancy, 10 or 20kHz sampling rate, about a half-dozen channels sampled simultaneously or near simultaneously, for maybe 5 or 10 seconds.

Here's the "asterisk": Oh, by the way, because the system in question was tied to the AC mains, I needed some...

## Short Takes (EE Shanty): What shall we do with a zero-ohm resistor?

In circuit board design you often need flexibility. It can cost hundreds or thousands of dollars to respin a circuit board, so I need flexibility for two main reasons:

- sometimes it's important to be able to use one circuit board design to serve more than one purpose
- risk reduction: I want to give myself the option to add in or leave out certain things when I'm not 100% sure I'll need them.

And so we have jumpers and DIP switches and zero-ohm resistors:

Jumpers and...

## March is Oscilloscope Month — and at Tim Scale!

I got my oscilloscope today.

Maybe that was a bit of an understatement; I'll have to resort to gratuitous typography:

I GOT MY OSCILLOSCOPE TODAY!!!!Those of you who are reading this blog may remember I made a post about two years ago about searching for the right oscilloscope for me. Since then, I changed jobs and have been getting situated in the world of applications engineering, working on motor control projects. I've been gradually working to fill in gaps in the infrastructure...

## 10 Items of Test Equipment You Should Know

When life gets rough and a circuit board is letting you down, it’s time to turn to test equipment. The obvious ones are multimeters and oscilloscopes and power supplies. But you know about those already, right?

Here are some you may not have heard of:

Non-contact current sensors. Oscilloscope probes measure voltage. When you need to measure current, you need a different approach. Especially at high voltages, where maintaining galvanic isolation is important for safety. The usual...## Efficiency Through the Looking-Glass

If you've ever designed or purchased a power supply, chances are you have had to work with efficiency calculations. I can remember in my beginning electronic circuits course in college, in the last lecture when the professor was talking about switching power converters, and saying how all of a sudden you could take a linear regulator that was 40% efficient and turn it into a switching regulator that was 80% efficient. I think that was the nail in the coffin for any plans I had to pursue a...

## Isolated Sigma-Delta Modulators, Rah Rah Rah!

I recently faced a little "asterisk" problem, which looks like it can be solved with some interesting ICs.

I needed to plan out some test instrumentation to capture voltage and current information over a short period of time. Nothing too fancy, 10 or 20kHz sampling rate, about a half-dozen channels sampled simultaneously or near simultaneously, for maybe 5 or 10 seconds.

Here's the "asterisk": Oh, by the way, because the system in question was tied to the AC mains, I needed some...

## Efficiency Through the Looking-Glass

If you've ever designed or purchased a power supply, chances are you have had to work with efficiency calculations. I can remember in my beginning electronic circuits course in college, in the last lecture when the professor was talking about switching power converters, and saying how all of a sudden you could take a linear regulator that was 40% efficient and turn it into a switching regulator that was 80% efficient. I think that was the nail in the coffin for any plans I had to pursue a...

## Linear Feedback Shift Registers for the Uninitiated, Part II: libgf2 and Primitive Polynomials

Last time, we looked at the basics of LFSRs and finite fields formed by the quotient ring \( GF(2)[x]/p(x) \).

LFSRs can be described by a list of binary coefficients, sometimes referred as the polynomial, since they correspond directly to the characteristic polynomial of the quotient ring.

Today we’re going to look at how to perform certain practical calculations in these finite fields. I maintain a Python library on bitbucket called...

## Linear Feedback Shift Registers for the Uninitiated, Part III: Multiplicative Inverse, and Blankinship's Algorithm

Last time we talked about basic arithmetic operations in the finite field \( GF(2)[x]/p(x) \) — addition, multiplication, raising to a power, shift-left and shift-right — as well as how to determine whether a polynomial \( p(x) \) is primitive. If a polynomial \( p(x) \) is primitive, it can be used to define an LFSR with coefficients that correspond to the 1 terms in \( p(x) \), that has maximal length of \( 2^N-1 \), covering all bit patterns except the all-zero...

## Hot Fun in the Silicon: Thermal Testing with Power Semiconductors

Here's a trick that is useful the next time you do thermal testing with your MOSFETs or IGBTs.

Thermal testing?!

Yes, that's right. It's important to make sure your power transistors don't overheat. In the datasheet, you will find some information that you can use to estimate how hot the junction inside the IC will get.

Let's look at an example. Here's a page from the IRF7739 DirectFET datasheet. I like this datasheet because it has almost all the thermal stuff on one page,...

## April is Oscilloscope Month: In Which We Discover Agilent Offers Us a Happy Deal and a Sad Name

Last month I wrote that March is Oscilloscope Month, because Agilent had a deal on the MSOX2000 and MSOX3000 series scopes offering higher bandwidth at lower prices. I got an MSOX3034 oscilloscope and saved my company $3500! (Or rather, I didn't save them anything, but I got a 350MHz scope at a 200MHz price.)

The scope included a free 30-day trial for each of the application software modules. I used my 30-day trial for the serial decode + triggering module, to help debug some UART...